Science is the poetry of Nature.







Contributing Authors
Posts tagged "Neuroscience"

afro-dominicano:

Brain Scans Link Concern for Justice With Reason, Not Emotion

People who care about justice are swayed more by reason than emotion. That is the unexpected finding of new brain scan research from the University of Chicago department of Psychology and Center for Cognitive and Social Neuroscience.

Psychologists have found that some individuals react more strongly than others to situations that invoke a sense of justice — for example, seeing a person being treated unfairly, or with mercy. The new study used brain scans to analyze the thought processes of people with high “justice sensitivity.”

“We were interested to examine how individual differences about justice and fairness are represented in the brain to better understand the contribution of emotion and cognition in moral judgment,” explained lead author Jean Decety, the Irving B. Harris Professor of Psychology and Psychiatry.

Using a functional magnetic resonance imaging (fMRI) brain-scanning device, the team studied what happened in the participants’ brains as they judged videos depicting behavior that was morally good or bad. For example, they saw a person put money in a beggar’s cup or kick the beggar’s cup away. The participants were asked to rate on a scale how much they would blame or praise the actor seen in the video. People in the study also completed questionnaires that assessed cognitive and emotional empathy, as well as their justice sensitivity.

As expected, study participants who scored high on the justice sensitivity questionnaire assigned significantly more blame when they were evaluating scenes of harm, Decety said. They also registered more praise for scenes showing a person helping another individual.

But the brain imaging also yielded surprises. During the behavior-evaluation exercise, people with high justice sensitivity showed more activity than average participants in parts of the brain associated with higher-order cognition. Brain areas commonly linked with emotional processing were not affected.

The conclusion was clear, Decety said: “Individuals who are sensitive to justice and fairness do not seem to be emotionally driven. Rather, they are cognitively driven.”

According to Decety, one implication is that the search for justice and the moral missions of human rights organizations and others do not come primarily from sentimental motivations, as they are often portrayed. Instead, that drive may have more to do with sophisticated analysis and mental calculation.

Decety adds that evaluating good actions elicited relatively high activity in the region of the brain involved in decision-making, motivation and rewards. This finding suggests that perhaps individuals make judgments about behavior based on how they process the reward value of good actions as compared to bad actions.

“Our results provide some of the first evidence for the role of justice sensitivity in enhancing neural processing of moral information in specific components of the brain network involved in moral judgment,” Decety said.

UChicago Psychology doctoral student Keith Yoder is a co-author on the paper, which was published in the March 19 issue of The Journal of Neuroscience.

explore-blog:

If you read one thing today, make it the great Oliver Sacks on what hallucinations reveal about how our minds work

afro-dominicano:

How Magic Mushrooms Really ‘Expand the Mind’

Your brain on psychedelic drugs looks similar to your brain when you’re dreaming, suggests a new study that may also explain why people on psychedelics feel they are expanding their mind.

In the study, the researchers scanned the brains of 15 people before and after they received an injection of psilocybin, the hallucinogen found in magic mushrooms.

Under psilocybin, the activity of primitive brain areas thought to be involved in emotion and memory — including the hippocampus and the anterior cingulate cortex — become more synchronized, suggesting these areas were working together, the researchers said.

This pattern of brain activity is similar to that seen in people who are dreaming, the researchers said.

"I was fascinated to see similarities between the pattern of brain activity in a psychedelic state and the pattern of brain activity during dream sleep," study researcher Robin Carhart-Harris, of Imperial College London in the United Kingdom, said in a statement. "People often describe taking psilocybin as producing a dreamlike state and our findings have, for the first time, provided a physical representation for the experience in the brain."

In contrast, the activity in brain areas involved in “high-level” thinking (such as self-consciousness) were less coordinated under psilocybin, the study found.

Finally, using a new technique to analyze the brain data, the researchers found that there were more possible patterns of brain activity when participants were under the influence of psilocybin, compared with when they were not taking the drug. This may be one reason why people who use psychedelic drugs feel that their mind has expanded — their brain has more possible states of activity to explore, the researchers said.

The researchers caution that, because some techniques used in the study are new, more research is needed to confirm the findings. The study is published today (July 3) in the journal Human Brain Mapping.

ajtechknow:

Meet 18-year-old Petra Grutzik, whose award-winning research with UCLA neuroscientists is just the beginning.

Grutzik is from Manhattan Beach, Calif., and recently was recognized at the 2014 intel International Science and Engineering Fair for her research on a protein called FOXP2 and its link to speech disorders.

FOXP2 is found in both human brains and songbird brains. Songbirds learn to sing through social interaction the way humans learn to talk, and FOXP2 is expressed similarly in both.

With the help of mentor professors from uclaneuroscience, Grutzik conducted research over two years to determine how various levels of this protein affects the quality of communication through speech. 

“When a baby is first born, they cry,” Grutzik explains. “Finches learn how to sing, like we learn how to talk. FOXP2 is involved in speech development in humans and in songbirds. Scientists study FOXP2 in songbirds so they can learn more about it in humans.”

“It is the only single gene that, when mutated, results in a human speech and language disorder,” says UCLA’s Dr. Stephanie White.

“We have excellent undergrads at UCLA,” says Dr. Nancy Day, Grutzik’s mentor at UCLA. “But there’s something special about Petra. We saw it as an excellent opportunity to embrace this eager young woman so that we could not only challenge her but she could challenge us. Petra has infused an energy into the lab that we didn’t have before.”

Grutzik also tapped into her background in robotics to design and build a cage for the finches that was long enough and had two separate chambers in which she could conduct her testing on the birds.  

Read more at our site and watch aljazeeraamerica on Saturday 7:30PM ET/4:30PM PT. 

(via afro-dominicano)

neurosciencestuff:

New Device Allows Brain To Bypass Spinal Cord, Move Paralyzed Limbs

For the first time ever, a paralyzed man can move his fingers and hand with his own thoughts thanks to an innovative partnership between The Ohio State University Wexner Medical Center and Battelle.

Ian Burkhart, a 23-year-old quadriplegic from Dublin, Ohio, is the first patient to use Neurobridge, an electronic neural bypass for spinal cord injuries that reconnects the brain directly to muscles, allowing voluntary and functional control of a paralyzed limb. Burkhart is the first of a potential five participants in a clinical study.

“It’s much like a heart bypass, but instead of bypassing blood, we’re actually bypassing electrical signals,” said Chad Bouton, research leader at Battelle. “We’re taking those signals from the brain, going around the injury, and actually going directly to the muscles.”

The Neurobridge technology combines algorithms that learn and decode the user’s brain activity and a high-definition muscle stimulation sleeve that translates neural impulses from the brain and transmits new signals to the paralyzed limb. In this case, Ian’s brain signals bypass his injured spinal cord and move his hand, hence the name Neurobridge.

Burkhart, who was paralyzed four years ago during a diving accident, viewed the opportunity to participate in the six-month, FDA-approved clinical trial at Ohio State’s Wexner Medical Center as a chance to help others with spinal cord injuries.

“Initially, it piqued my interested because I like science, and it’s pretty interesting,” Burkhart said. “I’ve realized, ‘You know what? This is the way it is. You’re going to have to make the best out of it.’ You can sit and complain about it, but that’s not going to help you at all. So, you might as well work hard, do what you can and keep going on with life.” 

This technology has been a long time in the making. Working on the internally-funded project for nearly a decade to develop the algorithms, software and stimulation sleeve, Battelle scientists first recorded neural impulses from an electrode array implanted in a paralyzed person’s brain. They used that data to illustrate the device’s effect on the patient and prove the concept.

Two years ago, Bouton and his team began collaborating with Ohio State neuroscience researchers and clinicians Dr. Ali Rezai and Dr. Jerry Mysiw to design the clinical trials and validate the feasibility of using the Neurobridge technology in patients.

During a three-hour surgery on April 22, Rezai implanted a chip smaller than a pea onto the motor cortex of Burkhart’s brain. The tiny chip interprets brain signals and sends them to a computer, which recodes and sends them to the high-definition electrode stimulation sleeve that stimulates the proper muscles to execute his desired movements. Within a tenth of a second, Burkhart’s thoughts are translated into action.

“The surgery required the precise implantation of the micro-chip sensor in the area of Ian’s brain that controls his arm and hand movements,” Rezai said. 

He said this technology may one day help patients affected by various brain and spinal cord injuries such as strokes and traumatic brain injury.

Battelle also developed a non-invasive neurostimulation technology in the form of a wearable sleeve that allows for precise activation of small muscle segments in the arm to enable individual finger movement, along with software that forms a ‘virtual spinal cord’ to allow for coordination of dynamic hand and wrist movements.

The Ohio State and Battelle teams worked together to figure out the correct sequence of electrodes to stimulate to allow Burkhart to move his fingers and hand functionally. For example, Burkhart uses different brain signals and muscles to rotate his hand, make a fist or pinch his fingers together to grasp an object, Mysiw said. As part of the study, Burkhart worked for months using the electrode sleeve to stimulate his forearm to rebuild his atrophied muscles so they would be more responsive to the electric stimulation.

“I’ve been doing rehabilitation for a lot of years, and this is a tremendous stride forward in what we can offer these people,” said Mysiw, chair of the Department of Physical Medicine and Rehabilitation at Ohio State. “Now we’re examining human-machine interfaces and interactions, and how that type of technology can help.”  

Burkhart is hopeful for his future.

“It’s definitely great for me to be as young as I am when I was injured because the advancements in science and technology are growing rapidly and they’re only going to continue to increase.”

(via afro-dominicano)

neurosciencestuff:


Finding the perfect balance — regulating brain activity to improve attention
Researchers from The University of Nottingham have found that balanced activity in the brain’s prefrontal cortex is necessary for attention. 
The research helps to make sense of attention deficits in people suffering from cognitive disorders — like schizophrenia — who often find it hard to sustain their attention. This has a significant effect on many aspects of their lives, including the ability to follow conversations, drive a car and hold down a job.
Activity in a healthy brain is controlled by inhibitory signals between neurons. The research shows that disrupting this healthy inhibition may be just as bad for attention as reducing neuron firing. It is often assumed that increasing brain activity has cognitive benefits, but the findings show that this is not always the case.
The research was carried out by a team in the University’s School of Psychology and involved inhibiting or disinhibiting the prefrontal cortex in rats and monitoring the effect. The researchers found that both of these extremes resulted in attentional deficits and that the ability to pay attention required an appropriate balance where neuron-firing was kept within a certain range.
Schizophrenia and attention deficits 
Studies of the brain in people with schizophrenia suggest aberrant neuron-firing in the prefrontal cortex. There is evidence that neuron firing in this part of the brain is often too high or too low.
Dr Tobias Bast, who led the study together with first author Dr Marie Pezze, said: “The implication of our findings is that the abnormalities we see in the prefrontal cortex of schizophrenia patients, for example, are indeed a plausible cause of the attention deficit these patients have.
“It also means that if we want to treat this pharmacologically, we can’t just boost activity of the prefrontal cortex or inactivate it, because that would actually result in an impairment. What we need to do is look at restoring balance of activity through drugs which keep the activity within a certain range.”
Cognitive deficits associated with schizophrenia
In people with schizophrenia, cognitive deficits — such as problems with attention — are less striking than other issues associated with the disorder, such as hallucinations, but are nevertheless a major problem.
Dr Bast said: “Initially people focused on the so-called ‘psychotic symptoms’, including hallucinations and delusions, so that’s what probably comes to mind when you think of schizophrenia. They have been in the fore because they have been so striking and that’s why referrals are made. But these can be treated, at least in a large proportion of patients, by using anti-psychotic medication, which we have had since the late 1950s.
“The problem is that unfortunately anti-psychotic drugs don’t improve cognitive deficits which are very debilitating, affecting many aspects of the patients’ lives. Cognitive deficits are a big problem and something that is currently not treated so finding something that helps this is really important.”

neurosciencestuff:

Finding the perfect balance — regulating brain activity to improve attention

Researchers from The University of Nottingham have found that balanced activity in the brain’s prefrontal cortex is necessary for attention. 

The research helps to make sense of attention deficits in people suffering from cognitive disorders — like schizophrenia — who often find it hard to sustain their attention. This has a significant effect on many aspects of their lives, including the ability to follow conversations, drive a car and hold down a job.

Activity in a healthy brain is controlled by inhibitory signals between neurons. The research shows that disrupting this healthy inhibition may be just as bad for attention as reducing neuron firing. It is often assumed that increasing brain activity has cognitive benefits, but the findings show that this is not always the case.

The research was carried out by a team in the University’s School of Psychology and involved inhibiting or disinhibiting the prefrontal cortex in rats and monitoring the effect. The researchers found that both of these extremes resulted in attentional deficits and that the ability to pay attention required an appropriate balance where neuron-firing was kept within a certain range.

Schizophrenia and attention deficits 

Studies of the brain in people with schizophrenia suggest aberrant neuron-firing in the prefrontal cortex. There is evidence that neuron firing in this part of the brain is often too high or too low.

Dr Tobias Bast, who led the study together with first author Dr Marie Pezze, said: “The implication of our findings is that the abnormalities we see in the prefrontal cortex of schizophrenia patients, for example, are indeed a plausible cause of the attention deficit these patients have.

“It also means that if we want to treat this pharmacologically, we can’t just boost activity of the prefrontal cortex or inactivate it, because that would actually result in an impairment. What we need to do is look at restoring balance of activity through drugs which keep the activity within a certain range.”

Cognitive deficits associated with schizophrenia

In people with schizophrenia, cognitive deficits — such as problems with attention — are less striking than other issues associated with the disorder, such as hallucinations, but are nevertheless a major problem.

Dr Bast said: “Initially people focused on the so-called ‘psychotic symptoms’, including hallucinations and delusions, so that’s what probably comes to mind when you think of schizophrenia. They have been in the fore because they have been so striking and that’s why referrals are made. But these can be treated, at least in a large proportion of patients, by using anti-psychotic medication, which we have had since the late 1950s.

“The problem is that unfortunately anti-psychotic drugs don’t improve cognitive deficits which are very debilitating, affecting many aspects of the patients’ lives. Cognitive deficits are a big problem and something that is currently not treated so finding something that helps this is really important.”

(via thenewenlightenmentage)

neurosciencenews:

Unlocking the Potential of Stem Cells to Repair Brain Damage

Read the full article Unlocking the Potential of Stem Cells to Repair Brain Damage at NeuroscienceNews.com.

A QUT scientist is hoping to unlock the potential of stem cells as a way of repairing neural damage to the brain.

The research is in Developmental Biology. (full access paywall)

Research: “Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix” by Rachel K. Okolicsanyi, Lyn R. Griffiths, Larisa M. Haupt in Developmental Biology. doi:10.1016/j.ydbio.2014.01.024

Image: Researchers are manipulating adult stem cells from bone marrow to produce a population of cells that can be used to treat brain damage. This image shows neural stem cells and is for illustrative purposes only. Credit Joseph Elsbernd.

neuromorphogenesis:

Scientists Tinker with Neurons to Turn Lovers into Fighters

It would be nice to know how and why aggression occurs. It would give us better insight into everything from international war to schoolyard bullying. New research in mice suggests that estrogen may be more important than testosterone in modulating aggressive behavior, and that sex and aggression may be intimately connected.

A Caltech research group led by David J. Anderson (who also studies aggression in fruit flies) started by identifying a set of neurons in the hypothalamus of mouse brains that are active during social behaviors. Specifically, those neurons are found in the ventromedial hypothalamus, which means they’re near the bottom (ventral) and interior (medial) surfaces of the hypothalamus.

The hypothalamus, which is contained in the brains of all vertebrate species, is involved in a wide variety of functions, from regulating circadian rhythms and thirst to modulating anti-predator defense and parenting behaviors. It’s therefore not surprising that the mouse hypothalamus is active during social encounters, both between two males and between males and females.

But rather than be content that this cluster of neurons was affiliated with social behavior the researchers, led by research fellow Hyosang Lee, wanted to see whether there was a direct causal relationship between those brain cells and visible social behavior. After all, one important “unsolved problem in neuroscience,” according to Anderson, is how the selection of overt behaviors is encoded in the brain.

Using a technique called optogenetics, the group used pulses of light directed through an electrode implanted in the brains of the mice to activate or inhibit those particular neurons. Indeed, they found that when they artificially activated hypothalamic brain cells, the male mice became more aggressive, even attacking females and toy mice. On the other hand, if they temporarily stopped the activity of those neurons, they could eliminate all aggression, even in the middle of a fight.

When they tried to activate those same cells in the brains of female mice, they weren’t able to induce attack-related behaviors, but they did increase “social investigation.” It isn’t that female mice aren’t capable of aggression, or that those cells aren’t used for social behaviors in females, just that other cells must be somehow more important for female aggression.

What the researchers identified a cluster of cells directly responsible for aggression in males is interesting to be sure, but what’s more interesting is just how those cells work.

For one thing, the neurons – which initiate attack behaviors in males but not females – have specialized receptors for binding to estrogen. While the nuances of the relationship between the hormone estrogen and the neurobiology of those cells are still not entirely understood, the finding adds to a growing pile of evidence that estrogen plays a key role in guiding male aggression.

If that wasn’t enough to make you sit up and take notice, the estrogen-sensitive neurons of the male hypothalamus have another curious feature. It’s not as if these cells act as an on-off switch, such that when activated they promote aggression, and when inhibited they stop attacks from occurring. Instead, they’re more like volume control knobs.

When the researchers used their optogenetic techniques to create a high level of activation, as if they were turning the volume all the way up to 11, the mice launched their attack behaviors. But when they activated those cells only weakly, if the volume knob was set to just 1 or 2 or 3, the males instead initiated mating-related behaviors. By fiddling with the knobs, the researchers could provoke their male mice to mount not just females, but also males, both intact and castrated.

By slowly increasing the strength of neural stimulation, the researchers were even able to switch the behavior of individual mice from sexual mounting to attack! Kissing becomes killing, humping becomes homicide (well, muricide, technically).

There were two important differences between the way these neurons responded to artificial stimulation for aggression and for mating. First, even though the researchers could invoke the males to attempt to mate with other males, the pair never actually proceeded to pelvic thrusting or ejaculation. Second, if the researchers inhibited those cells while male and female mice were already having sex, they didn’t stop. That’s contrary to the findings for aggression, since the researchers were able to artificially disrupt a fight.

What does it all mean? At the neurobiological level, it tells us that the level of activity in those neurons determines, at least in part, just what sort of social behavior is elicited.

It’s easy to run away with endless speculations based on these findings, but it’s worth taking a step back. For one thing, this work was done in mice, and there are plenty of reasons to suspect that mice are fairly unreliable as a model species when it comes to gaining better insight into our own. For another, the brain is perhaps the most complicated system in the known universe, and even the simplest behavior is the consequence of dizzying complexity.

Still, the finding further erodes the common views that aggression is controlled primarily by testosterone, and that estrogen is associated with more stereotypically feminine behaviors. Rather, estrogen is important both for males and for females, and is implicated in different types of social behavior. Could the same be true for humans? At least one thing is for certain: neurobiology is simply more complicated than the prevailing assumptions would lead you to believe.

Neuroscience is exciting. Understanding how thoughts work, how connections are made, how the memory works, how we process information, how information is stored - it’s all fascinating.
Lisa Randall (via houseofmind)

(via afro-dominicano)

neurosciencestuff:

Schizophrenia: What’s in my head?

When she’s experiencing hallucinations, artist Sue Morgan feels compelled to draw; to ‘get it out of her head’. Sue was diagnosed with schizophrenia about 20 years ago. The drawing is therapeutic, but it’s also Sue’s way of expressing the complex and sometimes frightening secret world in her head. In this film Sue meets Sukhi Shergill, a clinician and researcher at the Institute of Psychiatry in London. He’s also making pictures, but using MRI to peer inside the brains of schizophrenia patients.

Read more about schizophrenia

neurosciencestuff:

Bioengineer Studying How the Brain Controls Movement

A University of California, San Diego research team led by bioengineer Gert Cauwenberghs is working to understand how the brain circuitry controls how we move. The goal is to develop new technologies to help patients with Parkinson’s disease and other debilitating medical conditions navigate the world on their own. Their research is funded by the National Science Foundation’s Emerging Frontiers of Research and Innovation program.

"Parkinson’s disease is not just about one location in the brain that’s impaired. It’s the whole body. We look at the problems in a very holistic way, combine science and clinical aspects with engineering approaches for technology," explains Cauwenberghs, a professor at the Jacobs School of Engineering and co-director of the Institute for Neural Computation at UC San Diego. "We’re using advanced technology, but in a means that is more proactive in helping the brain to get around some of its problems—in this case, Parkinson’s disease—by working with the brain’s natural plasticity, in wiring connections between neurons in different ways."

Outcomes of this research are contributing to the system-level understanding of human-machine interactions, and motor learning and control in real world environments for humans, and are leading to the development of a new generation of wireless brain and body activity sensors and adaptive prosthetics devices. Besides advancing our knowledge of human-machine interactions and stimulating the engineering of new brain/body sensors and actuators, the work is directly influencing diverse areas in which humans are coupled with machines. These include brain-machine interfaces and telemanipulation.

thenewenlightenmentage:

Researchers Show How Lost Sleep Leads to Lost Neurons
First report in preclincal study showing extended wakefulness can result in neuronal injury.
Most people appreciate that not getting enough sleep impairs cognitive performance. For the chronically sleep-deprived such as shift workers, students, or truckers, a common strategy is simply to catch up on missed slumber on the weekends. According to common wisdom, catch up sleep repays one’s “sleep debt,” with no lasting effects. But a new Penn Medicine study shows disturbing evidence that chronic sleep loss may be more serious than previously thought and may even lead to irreversible physical damage to and loss of brain cells. The research is published today in the Journal of Neuroscience.
Continue Reading

thenewenlightenmentage:

Researchers Show How Lost Sleep Leads to Lost Neurons

First report in preclincal study showing extended wakefulness can result in neuronal injury.

Most people appreciate that not getting enough sleep impairs cognitive performance. For the chronically sleep-deprived such as shift workers, students, or truckers, a common strategy is simply to catch up on missed slumber on the weekends. According to common wisdom, catch up sleep repays one’s “sleep debt,” with no lasting effects. But a new Penn Medicine study shows disturbing evidence that chronic sleep loss may be more serious than previously thought and may even lead to irreversible physical damage to and loss of brain cells. The research is published today in the Journal of Neuroscience.

Continue Reading

thenewenlightenmentage:

Flying Through Inner Space

It’s hard to truly see the brain. I don’t mean to simply see a three-pound hunk of tissue. I mean to see it in a way that offers a deep feel for how it works. That’s not surprising, given that the human brain is made up of over 80 billion neurons, each branching out to form thousands of connections to other neurons. A drawing of those connections may just look like a tangle of yarn.

As I wrote in the February issue of National Geographic, a number of neuroscientists are charting the brain now in ways that were impossible just a few years ago. And out of these surveys, an interesting new way to look at the brain is emerging. Call it the brain fly-through. The brain fly-through only became feasible once scientists started making large-scale maps of actual neurons in actual brains. Once they had those co-ordinates in three-dimensional space, they could program a computer to glide through it. The results are strangely hypnotic.

Continue Reading

thenewenlightenmentage:

Did That Just Happen? How Your Brain Alters Mental Timelines

It sounds like a scene from a detective novel: The witness sees a body falling from the window, and then hears a loud noise that sounds like the body hitting the ground. But what if the noise actually came before the fall?

Navigating through our memories of past events seems to be easy task, but we don’t always get it right. We might remember things that didn’t happen, and we can also get the time wrong. We may remember incidents as happening closer together or farther apart than they actually did, or even completely mess up the order of events,

Continue Reading